H'S'B'

Automatisierte Erkennung von Störstoffen in Bioabfall mit maschinellem Lernen

Ansätze und Ergebnisse aus dem Projekt TRACES

PROJEKTÜBERSICHT

TITEL:

TRACES –
Trash Recognition and
Al-Controlled Evaluation
of waste Surfaces

PROJEKTSEITE:

www.hsbi.de/forschung/forschungsprojekte-undforschungsberichte/aktuelleforschungsprojekte

FÖRDERKENN-ZEICHEN:

03DPS1130A

LAUFZEIT:

01.10.2024 bis 31.03.2026

PROJEKT-PARTNER:

c-trace GmbH KAVG mbH

FÖRDERER:

BMFTR (Bundesministerium für Forschung, Technologie und Raumfahrt)

DATIPilot

Gefördert durch:

INHALT

PROBLEMSTELLUNG

KOOPERATIONSPARTNER

HERAUSFORDERUNGEN

LÖSUNGSANSATZ

ERGEBNISSE

AUSBLICK

PROBLEMSTELLUNG

Novellierte Bioabfallverordnung (BioabfV) der EU:

verpflichtet Kompostieranlagen zu aufwändigen Sichtkontrollen

Grenzwerte für Störstoffe:

Angelieferter Bioabfall darf nur geringe Störstoffmengen enthalten (Kunststoff, Glas, Metall, ...)

Sichtkontrolle des Bioabfalls:

Intensive Beurteilung durch Mitarbeiter sind zeitaufwändig, störanfällig und subjektiv

Automatisiertes System für die Sichtkontrolle:

Mitarbeiter unterstützen und Beurteilung objetkiver (vergleichbarer) machen

Computer Vision zur Unterstützung des Menschen:

KI-basiertes Verfahren zur Klassifizierung und Segmentierung der Störstoffe

Motivation: umweltschädlichen Eintrag von Störstoffen wie Mikroplastik in Böden und Grundwasser verringern

PROBLEMSTELLUNG

Halle des Kompostwerks der KAVG in Hille (Kreis Minden-Lübbecke)

Anlieferung von Bioabfall durch Sammelfahrzeug

KOOPERATIONSPARTNER

c-trace GmbH, Bielefeld

Digitalisierung und Abfallwirtschaft

Intelligente Lösungen in Entsorgungslogistik

c-detect: Detektion im Abfallbehälter

Infrastrukturelle Rahmenbedingungen im Projekt

Hardwareinstallation und Datensammlung/-bereitstellung

KAVG mbH, Hille

Entsorgungszentrum Pohlsche Heide

Einzugsgebiet: Kreis Minden-Lübbecke

Etablierung des Versuchsaufbaus:

- a) Installation der Kamera an der Hallendecke
- b) Anpassung des Betriebsablaufs

HERAUSFORDERUNGEN

großer betrachteter Bereich erfordert hochauflösenden Bilder

hochauflösende Bilder erfordern erhöhten Aufwand und erhöhte Rechenressourcen

Rückschluss von Oberfläche auf Störstoffanteil

Abschätzung von Masseprozent (M-%) der Störstoffe (Grenzwert der BioabfV)

Abladen des Biomülls im entsprechenden Bereich (Kameraaufnahme)

Lichtverhältnisse (Belichtung) und Wetterbedingungen (Nebel, Sonneneinstrahlung,...)

Inhalt schwankt je nach Saison (viel Grünschnitt im Sommer)

Fahrzeuge mit Zerkleinerungsmaschinen machen Objekte schwerer identifizierbar

Installation der Kamera an der Hallendecke der Entsorgungshalle der KAVG

Installationshöhe: 6,5m

Auflösung: 5MP (2048 x 1536 px)

Abgedeckter Aufnahmebereich: ca. 10 x 6 m

Datenspeicherung: LTE-Verbindung zu Cloudspeicher (AWS)

Aufnahmeintervall: 30sek (bei Pixelveränderung)

Deckeninstallation der Kamera in Entsorgungshalle der KAVG

Stromversorgung und Internetanschluss der Kamera in Entsorgungshalle der KAVG

Datensatzerstellung mit Roboflow

- a) Integrierte Annotationstools
- b) cloudbasiert
- c) automatische Augmentation
- d) zahlreiche Exportformate
- e) Versionierung

Outputs per training example: 5
Flip: Horizontal, Vertical
90° Rotate: Clockwise, Counter-Clockwise, Upside Down
Hue: Between -15° and +15°
Saturation: Between -20% and +20%
Brightness: Between -15% and +15%

TRAIN SET

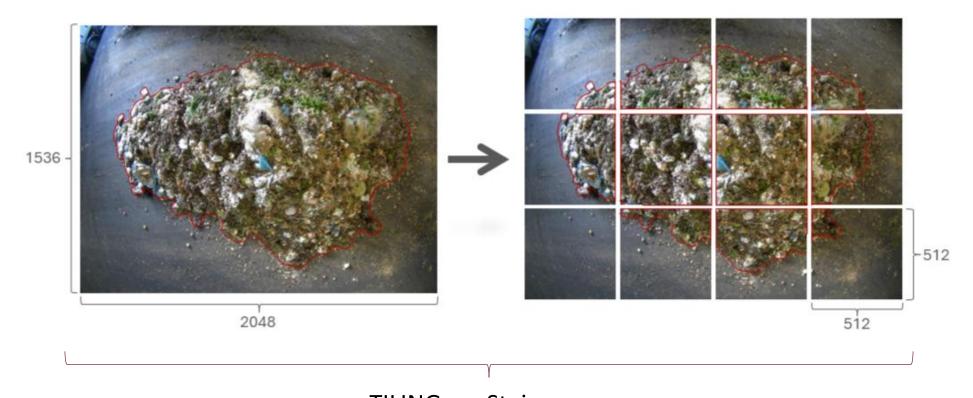
94%
VALID SET

45

TEST SET

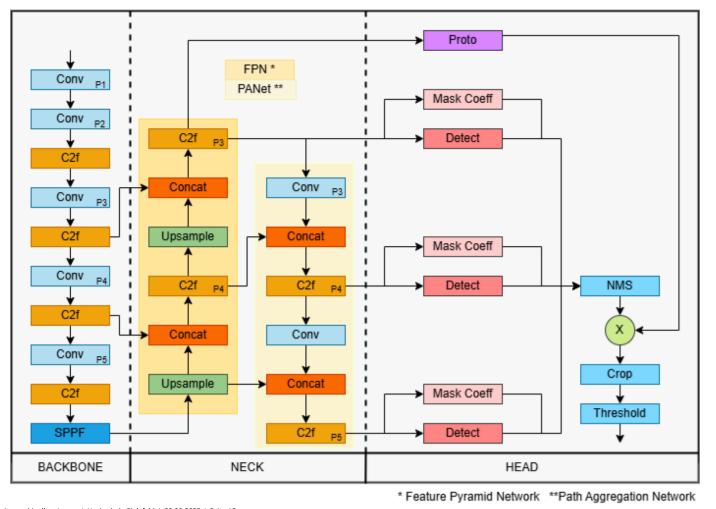
20 Images

Balancing des Datensatzes

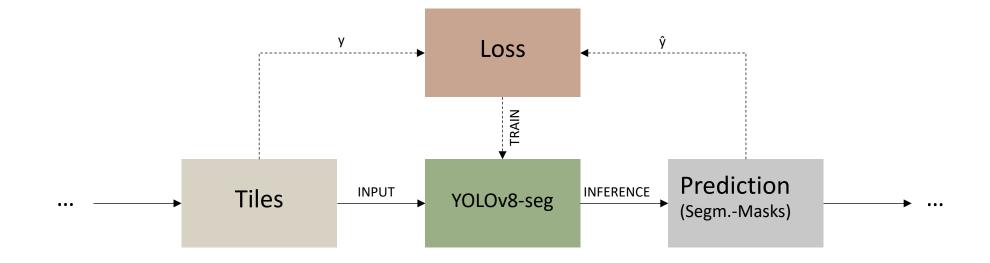


Klassenhäufigkeiten

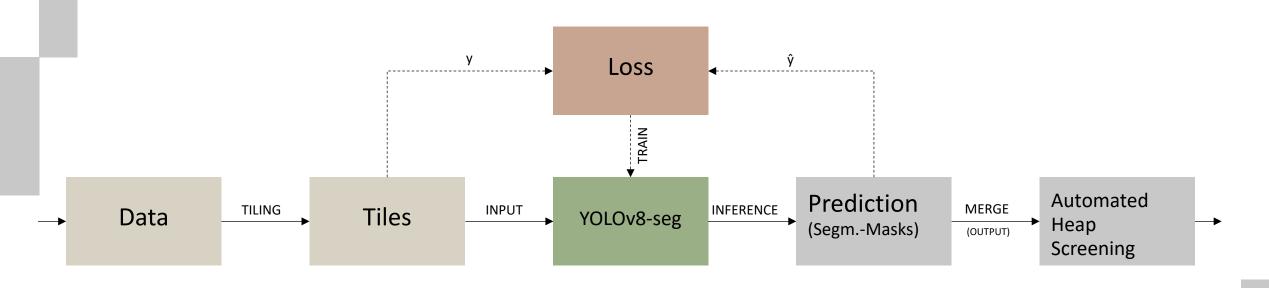
TILING zur Steigerung der Ressourceneffizienz und Nähe zu den Pretraining Daten

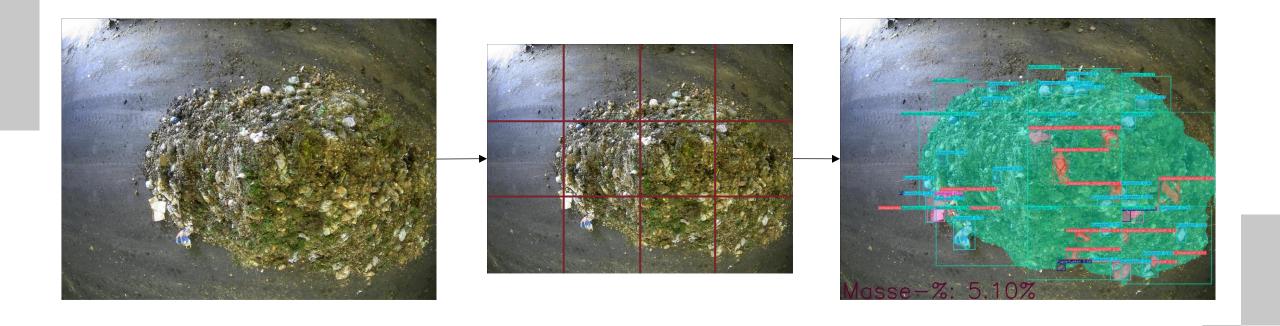


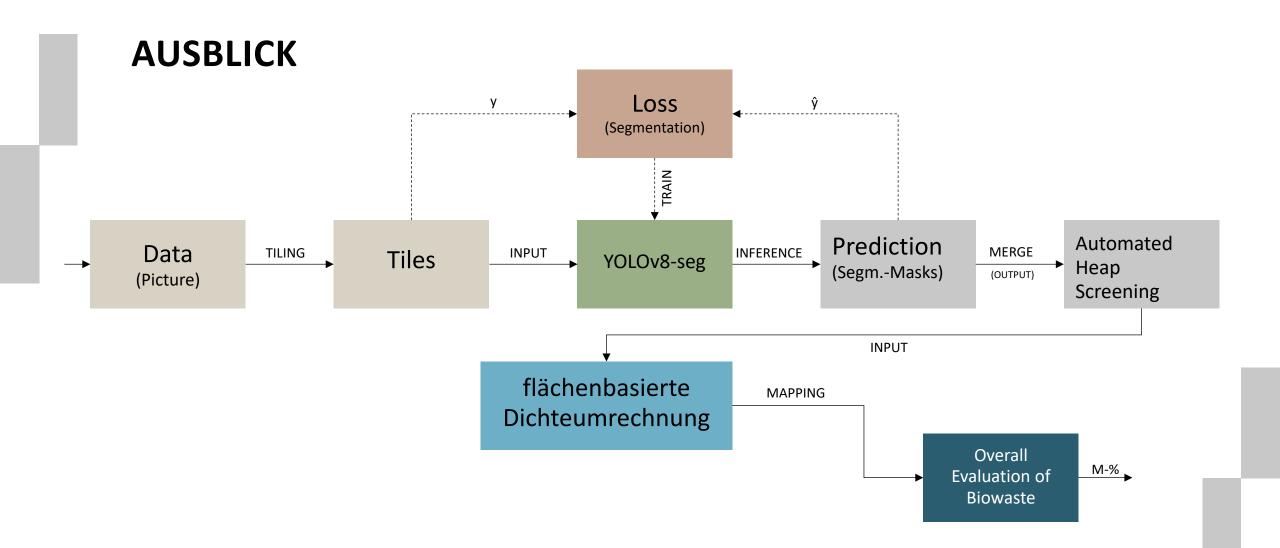
Computer Vision Task: Instance Segmentation a) Klassifikation der Störstoffe b) pixelgenaue Objekterkennung c) Trennung überlappender Objekte d) Grundlage der nachgelagerten Analyse: Bestimmung von M-% Modellauswahl: YOLOv8-seg a) komfortabel und effiziente Arbeitsumgebung (**Ultralytics**) b) Leistungs- und Echtzeitfähigkeit c) Robustheit gegenüber anspruchsvollen (heterogenen) Datensätzen



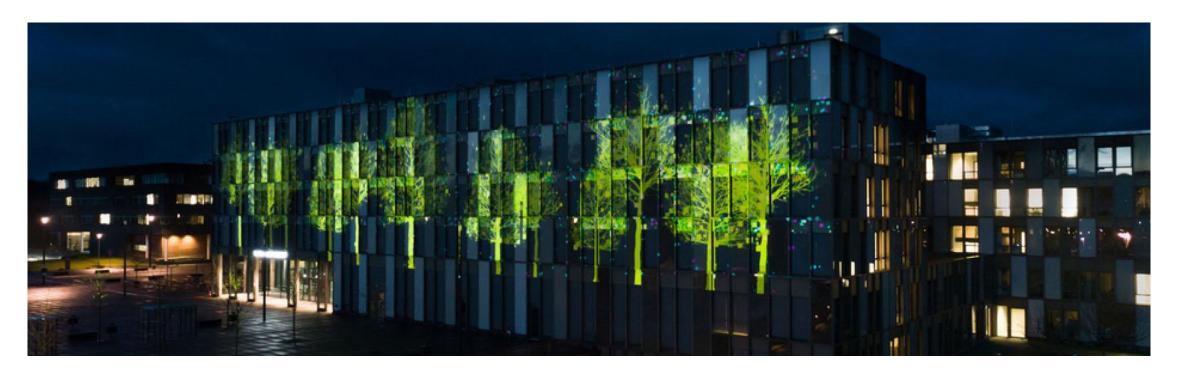
Architektur YOLOv8-seg







ERGEBNISSE



AUSBLICK

Ermittlung M-% auf Basis der Segmentierungsergebnisse

- a) Flächenanteile je Störstoffklasse als Basis
- b) Masseschätzung über bekannte Dichtewerte
- c) Berücksichtigung von Unsicherheiten durch die "Confidence"
- d) Anpassung der bekannten Klassen zur Verbesserung der Typenunterscheidung
- → Sichtung und Beurteilung des Bioabfalls durch pixelgenaue Segmentierung

H'S'B'

Vielen Dank für Ihre Aufmerksamkeit!

Gefördert durch:

